Why We Chose Edge Functions for Our SaaS Platform
The Challenge
When building a global SaaS platform, latency is a critical factor that directly impacts user experience. Our users are distributed across multiple continents, and we needed a solution that could provide:
- Consistent low-latency responses
- Cost-effective scaling
- Simple deployment process
- Real-time data processing capabilities
Understanding Edge Functions
Edge Functions represent a paradigm shift in how we deploy and execute code. Unlike traditional serverless functions that run in a fixed region, Edge Functions execute at the network edge, closer to the user.
Key Benefits
-
Reduced Latency
Traditional Setup (US East): Asia User -> US East -> Asia User ~300ms round trip Edge Functions: Asia User -> Asia Edge -> Asia User ~50ms round trip
-
Cost Optimization
- Pay only for actual compute time
- No cold starts
- Automatic scaling
-
Global Presence
- 300+ edge locations
- Automatic region selection
- No manual deployment needed
Performance Analysis
We conducted extensive testing across different regions to compare traditional serverless functions with Edge Functions.
Latency Comparison
// Example Edge Function
export const config = {
runtime: 'edge'
}
export default async function handler(req: Request) {
const start = performance.now()
// Process request
const data = await processRequest(req)
const duration = performance.now() - start
return new Response(
JSON.stringify({
data,
metrics: { duration }
}),
{
headers: {
'Content-Type': 'application/json'
}
}
)
}
Benchmark Results
| Region | Edge Function | Traditional Function | Improvement | | ------------- | ------------- | -------------------- | ----------- | | North America | 35ms | 85ms | 59% | | Europe | 42ms | 180ms | 77% | | Asia | 48ms | 320ms | 85% | | South America | 45ms | 250ms | 82% | | Australia | 51ms | 290ms | 82% |
Real-world Implementation
Authentication System
One of our first Edge Function implementations was the authentication system:
// app/api/auth/verify/route.ts
export const runtime = 'edge'
export async function POST(request: Request) {
try {
const { token } = await request.json()
// Verify token at the edge
const user = await verifyToken(token)
// Generate session
const session = await createEdgeSession(user)
return new Response(JSON.stringify({ session }), {
status: 200,
headers: {
'Content-Type': 'application/json'
}
})
} catch (error) {
return new Response(JSON.stringify({ error: 'Authentication failed' }), { status: 401 })
}
}
Real-time Data Processing
We also use Edge Functions for real-time data processing:
// app/api/analytics/track/route.ts
export const runtime = 'edge'
export async function POST(request: Request) {
const data = await request.json()
// Process analytics at the edge
await Promise.all([enrichEventData(data), storeEventData(data), triggerRealTimeAlerts(data)])
return new Response(null, { status: 200 })
}
Cost Analysis
Traditional vs Edge Deployment
Monthly costs for 1 million requests:
Traditional Setup:
- Compute: $20
- Data Transfer: $40
- Multiple Regions: $180
Total: $240/month
Edge Functions:
- Compute: $25
- Data Transfer: $15
- Global Deployment: Included
Total: $40/month
Cost Optimization Tips
-
Efficient Data Handling
// Good: Minimal data transfer return new Response( JSON.stringify({ id: user.id, name: user.name }) ) // Bad: Excessive data transfer return new Response(JSON.stringify(user))
-
Smart Caching
export const runtime = 'edge' export async function GET() { // Use edge caching const cached = await caches.default.match(request) if (cached) return cached const response = await generateResponse() response.headers.set('Cache-Control', 's-maxage=60') return response }
Challenges and Solutions
1. Database Connectivity
Challenge: Edge locations need fast database access.
Solution: Implemented connection pooling and read replicas:
// lib/database.ts
import { createPool } from '@neondatabase/serverless'
export const pool = createPool({
connectionString: process.env.DATABASE_URL,
maxConnections: 10,
idleTimeout: 60000
})
2. State Management
Challenge: Maintaining state across edge locations.
Solution: Used distributed caching:
// lib/cache.ts
import { Upstash } from '@upstash/redis'
export const cache = new Upstash({
url: process.env.UPSTASH_REDIS_URL,
token: process.env.UPSTASH_REDIS_TOKEN
})
Migration Strategy
We followed a phased approach:
-
Phase 1: Non-critical endpoints
- Analytics
- Feature flags
- Health checks
-
Phase 2: Authentication system
- Token verification
- Session management
- User preferences
-
Phase 3: Core functionality
- API endpoints
- Real-time features
- Data processing
Monitoring and Observability
Implemented comprehensive monitoring:
// middleware.ts
export const config = {
runtime: 'edge'
}
export default async function middleware(req: Request) {
const start = performance.now()
// Add tracking headers
const response = await fetch(req)
// Record metrics
await recordMetrics({
duration: performance.now() - start,
path: new URL(req.url).pathname,
status: response.status
})
return response
}
Conclusion
Edge Functions have proven to be a game-changer for our SaaS platform:
- 80% average latency reduction
- 83% cost reduction
- Improved developer experience
- Better user satisfaction
The combination of performance, cost-effectiveness, and simplified deployment makes Edge Functions an excellent choice for modern SaaS applications.
Future Considerations
-
Enhanced Edge Computing
- AI model deployment at the edge
- Advanced data processing
- Edge-based A/B testing
-
Expanded Use Cases
- Real-time collaboration features
- Video processing
- Complex computations